On the Application of Discrete Marginal Graphical Models
نویسندگان
چکیده
منابع مشابه
the application of multivariate probit models for conditional claim-types (the case study of iranian car insurance industry)
هدف اصلی نرخ گذاری بیمه ای تعیین نرخ عادلانه و منطقی از دیدگاه بیمه گر و بیمه گذار است. تعین نرخ یکی از مهم ترین مسایلی است که شرکتهای بیمه با آن روبرو هستند، زیرا تعیین نرخ اصلی ترین عامل در رقابت بین شرکتها است. برای تعیین حق بیمه ابتدا می باید مقدار مورد انتظار ادعای خسارت برای هر قرارداد بیمه را برآورد کرد. روش عمومی مدل سازی خسارتهای عملیاتی در نظر گرفتن تواتر و شدت خسارتها می باشد. اگر شر...
15 صفحه اولMarginal conditional independence models with application to graphical modeling
Conditional independence models are defined by a set of conditional independence restrictions and play an important role in many statistical applications, especially, but not only, graphical modeling. In this paper we identify a subclass of these models which are hierarchical marginal log-linear, as defined by Bergsma and Rudas (2002a). Such models are smooth, which implies the applicability of...
متن کاملConjugate and conditional conjugate Bayesian analysis of discrete graphical models of marginal independence
A conjugate and conditional conjugate Bayesian analysis is presented for bi-directed discrete graphical models, which are used to describe and estimate marginal associations between categorical variables. To achieve this, each bi-directed graph is re-expressed by a Markov equivalent, over the observed margin, directed acyclic graph (DAG). This DAG equivalent model is obtained using the same ver...
متن کاملSimplified marginal effects in discrete choice models
We show that with a simple normalization of explanatory variables, marginal effects in probit and logit models simplify dramatically, becoming a function of only the estimated constant term. Related simplifications hold for computation of asymptotic variances of these effects. D 2003 Elsevier B.V. All rights reserved.
متن کاملDistributed Learning of Gaussian Graphical Models via Marginal Likelihoods
In this talk, I will introduce our recent work on a distributed estimation framework of the inverse covariance matrix, also called the concentration matrix, in Gaussian graphical models. Traditional centralized estimation often requires iterative and expensive global inference and is therefore difficult in large distributed networks. In this work, we propose a general framework for distributed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sociological Methodology
سال: 2013
ISSN: 0081-1750,1467-9531
DOI: 10.1177/0081175013481960